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Abstract. In this paper, we consider the problem of minimizing a function in several variables which
could be multimodal and may possess discontinuities. A new algorithm for the problem based on
the genetic technique is developed. The algorithm is hybrid in nature in the sense that it utilizes the
genetic technique to generate search directions, which are used in an optimization scheme and is thus
different from any other methods in the literature. The algorithm has been tested on the Rosenbrock
valley functions in 2 and 4 dimensions, and multimodal functions in 2 and 4 dimensions, which
are of a high degree of difficulty. The results are compared with the Adaptive Random Search, and
Simulated Annealing algorithms. The performance of the algorithm is also compared to recent global
algorithms in terms of the number of functional evaluations needed to obtain a global minimum and
results show that the proposed algorithm is better than these algorithms on a set of standard test
problems. It seems that the proposed algorithm is efficient and robust.

Key words: Nonconcex function, global optimization, genetic algorithms, search direction,
Rosenbrock functions.

1. Introduction

Nonlinear programming methods have been used extensively to find the minimum
of a given function f : Rn

! R. There are many algorithms in the field of
nonlinear programming to find the minimum of f , if the function is unimodal.
These algorithms are usually classified as either derivative-free or derivative-based
methods. The latter methods are more efficient than the former ones but they can
only be used if the function is differentiable. These methods, in general, converge
to a stationary point (which may not even be a local minimum for functions which
are multimodal). For more on these methods see [1–2].

Several techniques have been developed recently for global optimization
(Corana et al. [3], and Table III of this paper). Although most of these algorithms
perform well in terms of quality of the solution, many of them are very costly in
terms of the number of functional evaluations needed to obtain the solution. There
are also few algorithms for nonlinear optimization that use genetic techniques [4,
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5]. In these algorithms, genetic techniques are used directly on the solution space
of the problem and thus are different from our proposed algorithm.

In this paper, a new genetic-based algorithm for optimizing nonlinear mul-
timodal functions in n variables is presented. On the one hand, the algorithm
resembles Hooke and Jeeves’ algorithm [1] in the sense that it goes through an
exploratory search and a pattern search. On the other hand, whereas the Hooke
and Jeeves’ algorithm uses co-ordinate directions in its exploratory steps, we use
genetic techniques to generate random search directions. That is why we classify
this algorithm as a hybrid genetic algorithm. The algorithm shares some spirit with
the simulated annealing approach [3] in that it overcomes the problem of solution
representation, and it is more efficient than existing algorithms because the genet-
ic technique is embedded in an optimization algorithm which uses a line search
scheme.

The paper is organized in the following way. In Section 2, we introduce the
general methodology of the hybrid genetic algorithm. Section 3 presents the con-
cept of the genetic algorithm and its use in the proposed algorithm. Results and
discussion are presented in Section 4.

2. Approach

Let f : Rn
! R be a real valued function. The function f could be multimodal

and may be discontinuous. Let F = fBy; 1 � y � rg be a set of r binary matrices
of the form By = (b

y
ij); 1 � i � n; 1 � j � nb, where nb is the number of

bits selected arbitrarily, and b
y
ij = 0 or 1: An injective mapping � is used to map

the binary matrix By
2 F , to a real vector dy 2 Rn. Therefore, it is possible

to generate r directions dy 2 Rn; y = 1; 2; :::; r by randomly generating binary
matrices By; y = 1; 2; :::; r and applying � on each one of them.

The transformation � : F ) Rn is defined as

dy = �(By) (1)

such that

d
y
i = (�1)b

y
i1

nbX

j=2

2j�2 b
y
ij ; i = 1; 2; . . . ; n: (2)

It is clear that the above construction can generate every vector inRn by appropriate
selection of matrices B.

In our implementation of the algorithm, we have found that nb equals 8 works
well (i.e. it makes the set of attainable directions in the above lemma dense in Rn).
Next, we summarize the hybrid genetic approach for function minimization.

The algorithm starts at a random point, say x1 and it goes through several
iterations. In any iteration k, the algorithm goes through m cycles and one pattern
search step. The point xk of each iteration becomes the starting point z1 for the
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m cycles resulting in the points z2; z3; :::; zm+1 (in each cycle, r directions are
generated using the genetic algorithm, and a line search is performed along each
direction. The direction that gives the minimum functional value is chosen.) After
m cycles, the algorithm takes an optimal step in the direction zm+1�z1 to generate
the next point xk+1. If jjxk+1 � xkjj � �, where � > 0, and is sufficiently small,
the algorithm stops; otherwise, the algorithm goes through iteration k + 1 starting
from the point xk+1.

Next, we present the general statement of the hybrid genetic algorithm.

STATEMENT OF THE HYBRID GENETIC ALGORITHM

Initialization Step

Choose a scalar � > 0 to be used for terminating the algorithm. Choose r (the
number of random search directions to be used in each cycle), and m (the number
of cycles to be performed in each iteration). Choose a starting pointx1. Let z1 = x1.
Choose arbitrarily a set of binary matrices Bi; i = 1; 2; :::; r. Using the mapping �
in (1), get di; i = 1; 2; :::; r corresponding to Bi; i = 1; 2; :::; r. For ` = 1; 2; :::; r,
let �` be an optimal solution to the problem.

min
�2R

f(z1 + �d`)

c` = f(z1 + �`d`):

Let k = j = 1, let IMAX be the maximum number of iterations, and go to the
main step.

Main Step

1. Perform m cycles. Let �opt and dopt be such that

f(zj + �optdopt) = min
1�`�r

f(zj + �`d`)

(or dopt is the best direction in this cycle, and �opt is the optimal step length).
Let

zj+1 = zj + �opt dopt:

If j = m go to step 3; otherwise, replace j by j + 1 and go to step 2.

2. Use the genetic routine to generate new search directions
(a) Use the genetic technique (see Section 3 for details) to generate r new binary

matricesBi; i = r+1; r+2; :::; 2r using the current matricesBi; i = 1; 2; :::; r.
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(b) Using the mapping � in equations (1) and (2), get directions di; i = r+ 1; r+
2; :::; 2r. Let ` = r + 1.

(c) Let �` be an optimal solution to the problem.
min
�2R

f(zj + �d`):

Let c` = f(zj + �`d`). If ` < 2r, replace ` by `+ 1, and repeat this step.
(d) Pick the minimum r of c`; ` = 1; 2; :::; 2r; rename them as c1; c2; :::; cr , and

their corresponding binary matrices B1; B2; :::; Br , and return to step 1.

3. Perform pattern search. Let d = zm+1 � z1. Let �̂ be an optimal solution to
the problem

min
�2R

f(zm+1 + �d):

Let xk+1 = zm+1 + �̂d, and go to step 4.

4. Check termination criteria. If jjxk+1 � xkjj < �; or k = IMAX , stop;
otherwise, let j = 1, z1 = xk+1, replace k by k + 1, and go to step 2.

REMARK. The proposed algorithm uses two parameters, namely r (the number of
random searches per cycle), and m (the number of cycles per iteration.) The value
of r affects the intensity of the search, i.e., the larger the value of r the more the
neighborhood of the current point is searched (i.e. the search is intensified around
this point.) The value of m affects the diversification of the search. A large value
of m means that the algorithm explores different regions more. Hence the ratio of
m to r represents the ratio between diversification and intensification of the search.
m should be greater than or equal to n, and r should be greater than or equal to 2.

CONVERGENCE OF THE PROPOSED ALGORITHM

Suppose that f is differentiable, and let the solution set � = f�x : rf(�x) = 0g.
Assume also that m = n, or that the number of cycles is equal to the dimension of
the space. Assume also that the optimum directions dopt found in Step 1 are linearly
independent. Now, each iteration of the algorithm consists of n searches along
linearly independent directions (where, we define the direction here to be dopt

found in each cycle), and a pattern search. Denote the first n searches by the map
B, and the pattern search by the map C . Using an argument similar to standard
theorems that establish convergence of algorithms using linearly independent and
orthogonal search directions to stationary points (e.g. Theorem 7.3.5 of Bazaraa et
al. [1, pp. 254–255]), it follows thatB is closed. If the minimum of f along any line
is unique and letting � = f , then �(xk+1) < �(xk) for xk =2 �. By definition of
C, �(z) � �(xk+1), for z 2 C(xk+1). Assuming ^ = fx : f(x) � f(x1)g, where
x1 is the starting point, is compact, convergence of the proposed algorithm can
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be established using standard theorems that establish convergence of algorithms
with composite maps to stationary points (e.g. theorem 7.3.4 of Bazaraa et al. [1,
p. 253]).

One can notice that the proof of the procedure stated above requires a unique
minimizer over all lines inRn, making the functions strictly quasiconvex and hence
the local solutions are also global solutions. Therefore, the above proof does not
stand for general nonlinear functions. However, one can appeal to a spacer step to
guarantee theoretical convergence. This can be achieved by inserting such a spacer
step involving a periodic minimization along the negative gradient direction (which
always exists due to the differentability assumption on the function). Clearly, these
spacer steps are steps of the steepest descent algorithm which is known to converge,
then the only requirement for the whole procedure to converge is that the other
steps of the procedure do not increase the value of the function which is fulfilled
by our procedure (see spacer step theorem in Luenberger [6, p. 231] as well as
discussion on spacer steps in Bazaraa et al. [1, p. 253, and p. 237]).

One should note that it might be expensive to check linear independence for
directions especially if the dimension of the space is large. One might either ignore
this hoping that it will be rare that randomly generated directions will be linearly
dependent, or one can generate randomly directions of the form d(�i), where
�i = 1; 0 or �1 and restrict the selection of directions in each cycle to guarantee
linear independence (this latter idea makes the genetic algorithm operate directly
on the directions rather than on the binary matrices. One clear disadvantage of this
is that the directions generated using this scheme are rather limited compared to
the original scheme.) At this point, the following comments are in order:
� As it is clear from the statement of the algorithm, dopt is the best direction

among the r directions used in each cycle, and it is the only direction used for
updating the point zj at the end of the cycle (the remaining r�1 directions are
only used for exploratory purposes, and therefore, they are not used to update
the point).

� As stated earlier the proposed algorithm can be established to converge to a
stationary point provided that some conditions are satisfied, which is the case
for most of the classical nonlinear programming algorithms. However, it is
conjectured that the proposed algorithm will not get stuck in such points, and
it will eventually converge to a global minimum. This conjecture is supported
by the good though limited empirical results presented in Section 4 of this
paper. However, it remains to be proven.

3. The General Genetic Technique

Genetic algorithms are basically search techniques. They emulate the natural pro-
cess of evolution while progressing towards the optimum. These algorithms have
been used extensively in solving various optimization problems [7–8].
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In a genetic approach, at any given instant of time, a population of possible
solutions is generated. Their number is arbitrarily chosen, but somehow depends
on the nature and size of the problem. It may also depend on the memory size of
the computer on which it is being implemented. Each element of the population
is called a chromosome, which is a combination of symbols, known as genes.
Chromosomes are possible solutions to the problem. In each generation, the best
chromosomes are selected using the Roulette principle, to act as new parents (the
Roulette principle is explained next). Three genetic operators known as reproduc-
tion, crossover, and mutation are applied to these parents to generate new offspring.
These new offspring inherit good qualities from the parents. In the usual genetic
algorithm, the process of generating new offspring is continued until there is no fur-
ther improvement in the offspring [6]. However, in our case, we use the generated
offspring in an optimization algorithm. Next, we discuss a scheme for performing
the Roulette principle.

THE ROULETTE PRINCIPLE

Assume that the current point is x1 2 Rn, and that one has r binary matrices at
hand. The transformation � is applied on all matrices Bi, i = 1; 2; :::; r, which
constructs r directions di 2 Rn, i = 1; 2; :::; r, as defined in eq. (1) and eq. (2).
Then let

cimin = min
�2R

f(x1 + �di); 8di; i = 1; . . . r (3)

be the cost associated with each direction di. Assume, without loss of generality,
that the costs in (3) are ordered in an ascending order or c1

min � c2
min::: � crmin,

and let B1; B2; :::; Br and d1; d2; :::; dr be the corresponding binary matrices and
directions respectively. Compute �i =

h
crmin + 1+ 1

r

i
� cimin; i = 1; 2; :::; r, and

generate p = (p1; . . . ; pi; . . . ; pr) using the following formula

pi =

Pi
k=1 �

k

Pr
k=1 �

k
; i = 1; 2; :::; r: (4)

Now, to pick a parent out of the current population, a scheme is needed which
assigns higher probabilities of selection to parents with smaller objective functions
values than to those parents with worse objective function values. We propose
the following scheme which achieves the above requirement. Calculate pi; i =
1; 2; :::; r, using equation (4) above. Generate a random number v � u(0; 1),
where u(0; 1) is the uniform distribution between 0 and 1. A cut s is selected if
ps�1 � v � ps, where p0 = 0. This makes ds the favorite direction of search,
which, in turn makes Bs the favorite parent (i.e. the parent to be picked).

The above suggested scheme for performing the Roulette principle can be used
to select parents that are necessary for performing the reproduction, crossover, and
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mutation operators. For more detail on these operators see [7–8]. One can select
each one of the above operators to be executed with certain predefined probabilities.

4. Results and Discussion

The algorithm developed in this paper has been tested on various functions, with
different orders of difficulty. Two sets of test functions are used which are the same
as those used by Corana et al. [3] to facilitate comparison.

The first set consists of the Rosenbrock valley functions in 2 and 4 dimen-
sions. These are classical examples of ill-conditioned, unimodal functions. The
Rosenbrock valley functions can be found in [3] and [9]. The second set con-
sists of multimodal functions in 2 and 4 dimensions as constructed by Corana et
al. [3]. These functions are basically paraboloid with axes parallel to co-ordinate
directions. They contain a very high number of minima, and possess strong dis-
continuities. Such functions quickly trap any unimodal optimization algorithm at
a local minimum. This property makes them a very tough test for any optimization
algorithm. By testing our algorithm on the same functions used by Corana et al.
[3], we can compare our algorithm with the Simulated Annealing method [3], and
the Adaptive Random Search method [10]. As stated earlier, the functions used for
testing are of a high degree of difficulty. Thus, there is a high probability of the
algorithms being trapped at local minima.

The tests were performed starting from different initial points, with the initial
directions generated randomly. Line searches were performed using the Golden
Section technique with tolerance 10�6. m = 3n + 1 was used. r = 7 for n = 2
and r = 12 for n = 4 were selected after some preliminary testing. These tests
were carried out on a PC–386 with a co-processor. The time taken to perform
these tests was much less than that reported by Corana et al. [3]. However, we rely
on the number of function evaluations as our measure of efficiency, because it is
machine-independent.

We have presented the results obtained for the Rosenbrock functions in 2 and
4 dimensions in Table I. For comparison purposes, the results for the Adaptive
Random Search, and Simulated Annealing algorithms are taken from [3]. The
results for the parabolic multiminima functions in 2 and 4 dimensions are presented
in Table II. The results for the Simulated Annealing algorithm are also presented
for comparison. It can be seen from the tables that the hybrid genetic algorithm
always converges to the global optimal value irrespective of the initial point. In
comparison, the Simulated Annealing algorithm ends up with local minima in a
few cases [3], though they are very close to the optimal solution. The Adaptive
Random Search algorithm stops at saddle points and fails to converge to the optimal
values in some instances [3].

The efficiency of the algorithms is measured by the number of function evalu-
ations. It can be observed that the hybrid genetic algorithm is much more efficient
than the Simulated Annealing algorithm. The function evaluations needed are
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Table I. Comparison of the genetic algorithm with other methods for Rosenbrock valley
functions in 2 and 4 dimensions

Method
Starting Point Function Evaluations Final Function Value

�ARS �SA GA �ARS �SA GA

2 Dimensions:
1001,1001 3411 500001 2389 1586.4 1.8E-10 1.2E-12
1001,�999 131841 508001 2214 8.6E-9 2.6E-9 2.3E-10
�999,�999 15141 524001 3254 1.2E-8 1.2E-9 4.4E-11
�999,1001 3802 484001 3412 583.2 4.2E-8 3.4E-10
1443,1 181280 492001 2115 4.7E-10 1.5E-8 3.3E-10
1,1443 2629 512001 5781 1468.9 1.6E-9 1.2E-10
1.2,1 6630 488001 1548 5.5E-7 2.0E-8 2.2E-18

4 Dimensions
101,101,101,101 519632 1288001 228534 1.9E-6 5.0E-7 4.8E-9
101,101,101,�99 194720 1328001 213422 1.7E-6 1.8E-7 2.1E-9
101,101,�99,�99 183608 1264001 264521 3.8E-6 5.9E-7 2.2E-8
101,�99,�99,�99 195902 1296001 299321 2.3E-6 7.4E-8 3.0E-9
�99,�99,�99,�99 190737 1304001 44567 2.7E-6 3.3E-7 5.7E-9
�99,101,�99,101 4172290 1280001 234512 2.6E-6 2.8E-7 3.9E-8
101,�99,101,�99 53878 1272001 193134 3.7 2.3E-7 4.1E-8
201,0,0,0 209415 1288001 182131 1.1E-6 7.5E-7 3.0E-8
1,201,1,1 215116 1304001 283946 1.2E-6 4.6E-7 5.8E-8
1,1,1,201 29069006 1272001 214312 2.2E-6 5.2E-7 4.3E-8

�� Results taken from Corana et al. [3].

approximately 20% of those required by the Simulated Annealing algorithm with
equal or better accuracy. It is also important to note that apart from a few excep-
tions, the number of function evaluations needed to find an optimum does not vary
much for different initial points.

We have also compared the performance of the proposed algorithm with some
of the recent algorithms in the literature which are shown in Table III. Table IV
gives the number of function evaluations taken by methods A-H for the set of
test functions proposed by Dixon and Szegö [18] (see Table VI). In Table V, the
running times in units of standard time for these methods are given, where one
unit of standard time is defined to be the running time for 1000 evaluations of the
Shekel 5 function at the point (4; 4; 4; 4) (see [18]). There are no times for methods
G, since the reported times for G are in absolute computer time and not available in
standard time units as for other methods. Results for methods A-G are taken from
Dekkers and Arts [16].

Clearly, our proposed algorithm requires less number of function evaluations,
and less execution time than the other methods in most of the cases. One should
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Table II. Comparison of the genetic algorithm with simulated annealing for
parabolic, multiminima functions in 2 and 4 dimensions

Method
Starting Point Function Evaluations Final Function Value

�SA GA �SA GA

2 Dimensions:
100,888 684000 1814 2.5E-8 3.4E-9
�999,1001 680000 2859 3.2E-9 2.6E�10
�999,�889 708000 2438 4.0E-9 8.7E-11
1001,�998 696000 2674 1.2E-9 2.9E-10
1441,3 708000 2934 3.2E-9 5.4E-11
�10,�1410 680000 2412 4.0E-8 4.6E-9
�1100,850 696000 2661 1.2E-8 3.2E-9
850,�1100 656000 2345 4.2E-10 6.0E-11

4 dimensions:
�999,�999,�999,�1000 1440000 230002 2.6E-7 2.9E-8
999,1000,1001,�998 1160000 210331 3.4E-3 3.3E-6
1000,�1000,10000,�1000 1464000 143135 8.7E-8 7.4E-10
�999,�999,�998,�1000 1440000 185439 2.0E-7 1.8E-9
1000,999,999,998 1424000 236231 3.4E-7 8.4E-10
1000,�1000,�9999,9999 1416000 164548 2.5E-7 1.1E-9
1000,�1000, 998,1000 1176000 214583 3.4E-3 3.1E-6
0,0,1,2001 1408000 223121 4.0E-7 3.8E-8
1998,3,10,�13 1408000 173154 4.6E-7 1.5E-8
1234,�1234,560,�334 1432000 204562 3.4E-7 5.3E-9

�� Results taken from Corana et al. [3].

Table III. Methods used in our second comparison

Method Name Reference

A Multistart Rinnooy Kan and Timmer [11]
B Controlled Random Search Price [12]
C Density Clustering Törn [13]
D Clustering with distribution function De Biase and Frontini [14]
E Multi Level Single Linkage Rinnooy Kan and Timmer [15]
F Simulated Annealing Dekker and Aarts [16]
G Simulated Annealing based on Aluffi-Pentini et al. [17]

stochastic differential equations
H Hybrid Genetic Algorithm This paper

also notice that the multilevel single linkage requires 1000 function evaluations for
the random sample, and the simulated annealing of Dekkers and Arts requires 10 n
function evaluations for initialization, where n is the dimension and these are not
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Table IV. Number of function evaluations needed for methods in Table
III for the functions shown in Table VI.

Function GP BR H3 H6 S5 S7 S10

2 2 3 6 4 4 4

A 4400 1600 2500 6000 6500 9300 11000

B 2500 1800 2400 7600 3800 4900 4400

C 2499 1558 2584 3447 3649 3606 3874

D 378 597 732 807 620 788 1160

E 148 206 197 487 404 432a 564

F 563 505 1459 4648 365a 558 797

G 5439 2700 3416 3975 2446 4759 4741

Hb 146 199 191 482 403 521 559

a The global minimum was not found in one of the four runs.
b Average of four runs.

Table V. Running times in units of standard time for methods
shown in Table III for functions given in Table VI

Function GP BR H3 H6 S5 S7 S10

2 2 3 6 4 4 4

A 4.5 2 7 22 13 21 32

B 3 4 8 46 14 20 20

C 4 4 8 16 10 13 15

D 15 14 16 21 23 20 30

E 0.15 0.25 0.5 2 1 1a 2

F 0.9 0.9 5 20 0.8a 1.5 2.7

Hb 0.15 0.24 0.49 1.99 1.00 1.25 1.99

a The global minimum was not found in one of the four runs.
b Average of four runs.

Table VI. Test functions

GP Goldstein and Price Dixon and Szegö [18]

BR Branin Dixon and Szegö [18]

H3,H6 Hartmann’s family Dixon and Szegö [18]

S5,S7,S10 Shekel’s family Dixon and Szegö [18]
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shown in Tables IV and V. This means that our algorithm is actually much more
efficient than these algorithm as all function evaluations needed for our algorithm
are reported in Table IV. Moreover, the proposed algorithm is more reliable than
some of these algorithms as it never failed to get the global solution in any of the
runs, while some of these methods did fail in few of the runs as shown in Table IV.

5. Conclusions

In this paper, a new approach for the optimization of multimodal functions has been
presented. The method is based on constructing search directions using genetic
techniques. This overcomes the problem associated with representation of real
solutions. The algorithm has been tested on several standard test problems. It has
proven to be very robust and requires fewer function evaluations than recent global
algorithms in the literature.
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